Synthesis of Some Nitro-derivatives of Diphenylamine.

By N. M. CULLINANE and in part (MISS) O. E. EMBREY and DANIEL R. DAVIES.

THE preparation of the di- and tri-nitro-derivatives of diphenylamine described by the authors (J. Physical Chem., 1932, 36, 1434) is herein recorded. The former were obtained by condensing 2:4dinitrochlorobenzene (1 mol.) and 2:4-dinitro-5-chlorotoluene (1 mol.) with the appropriate amines (1.3 mols.). For the preparation of the trinitro-compounds, picryl chloride was used, and also in some syntheses 2:4:6-trinitrophenylmethylnitroamine, which in many cases was equally satisfactory (compare James, Jones, and Lewis, J., 1920, 117, 1273): it was not found necessary to add sodium hydroxide, as employed by Turpin (J., 1891, 59, 714).

EXPERIMENTAL.

The following condensations were carried out with the aid of anhyd. NaOAc as condensing agent, no solvent being employed, the mixture being heated for 2 hrs. at 150—160°.

2: 4-Dinitro-5-methyldiphenylamine (from dinitrochloro- or dinitrobromotoluene; yield, 70%), yellow lustrous prisms, m. p. 148°, from EtOH (Found: N, 15.3. Calc.: N, 15.4%). Hepp (Annalen, 1882, 215, 369) records orange needles, m. p. 142°. 2:4-Dinitro-5:2'-dimethyldiphenylamine (from dinitrochloro- or dinitrobromo-toluene; yield, 70%), long thin yellow plates, m. p. 111°, from EtOH (Found: N, 14·4. $C_{14}H_{13}O_4N_3$ requires N, 14·6%). 2:4-Dinitro-5: 3'-dimethyldiphenylamine, deep yellow plates, m. p. 136.5°, from EtOH; yield, 80% (Found: N, 14.8%). 2:4-Dinitro-5:2':4'-trimethyldiphenylamine (from dinitrochloro- or dinitrobromo-toluene and m-xylidine; yield, 70%), greenish-yellow needles, m. p. 138° (Found: N, 13.85. $C_{15}H_{15}O_4N_3$ requires N, 13.95%). 2:4-Dinitro-5:2':5'-trimethyldiphenylamine (from dinitrochlorotoluene and p-xylidine; small yield), yellow prisms, m. p. 114.5°, from EtOH (Found: N, 13.9. C₁₅H₁₅O₄N₃ requires N, 13.95%). These four compounds are readily sol. in C₆H₆, AcOH, or Me₂CO. 2:4-Dinitro-2'-methoxy-5-methyldiphenylamine, recryst. from AcOH, had m. p. 146° (yield, 90%). It was sparingly sol. in light petroleum and was isolated in two modifications of different colour (Cullinane, Embrey, and Davies, loc. cit.). 2:4-Dinitro-3'-ethoxydiphenylamine, recryst. from Me₂CO-EtOH, formed yellow plates, m. p. 153° (yield, 75%), slightly sol. in EtOH (Reverdin and Lokietek, Bull. Soc. chim., 1915, 17, 406, describe orange-yellow crystals, m. p. 151°). These two compounds are readily sol. in C₅H₆, Me₂CO, CHCl₃, or C₅H₅N. 2:4-Dinitro-3'-ethoxy-5-methyldiphenylamine, thick orange-yellow plates, m. p. 115°, from EtOH (yield 70%); moderately easily sol. in EtOH or AcOH, easily in Me₂CO, CHCl₃, C₅H₅N, or C₆H₆ (Found: N, 13.3. $C_{15}H_{15}O_5N_3$ requires N, 13.25%). 2:4-Dinitro-4'-ethoxy-5-methyldiphenylamine, recryst. from AcOH, had m. p. 148.5°; yield, 90%. It exists in two modifications of different colour (Cullinane, Embrey, and Davies, loc. cit.).

2:4-Dinitro-5-methylphenylbenzylamine (from dinitrochlorotoluene and benzylamine; yield, 70%), bright yellow plates, m. p. 102° , from C_6H_6 (Found: N, $14\cdot8$. $C_{14}H_{13}O_4N_3$ requires N, $14\cdot6\%$). A higher temp. (180°) was employed in the prep. of the three following compounds. 2:4-Dinitro-2'-methoxy-diphenylamine (80% yield), m. p. $165\cdot5^{\circ}$ (Cullinane, Embrey, and Davies, loc. cit.). Schöpff (Ber., 1889, 22, 902) gives m. p. 151° . 2:4-Dinitro-4'-ethoxydiphenylamine, scarlet lustrous plates, m. p. $121-122^{\circ}$, from EtOH in 90% yield (compare Blom, Helv. Chim. Acta, 1921, 4, 1036). 2:4-Dinitro-phenylbenzylamine (from dinitrochlorobenzene and benzylamine; yield, 90%), yellow plates, m. p. 116° , from AcOH; sol. in EtOH, C_6H_6 , or Me_2CO ; alc. alkali produces a red colour (Found: N, $15\cdot4$. $C_{13}H_{11}O_4N_3$ requires N, $15\cdot4\%$).

For the prep. of the two following substances the reaction mixture was heated to 200°. 2:4-Dinitro-4'-methoxydiphenylamine, deep red prisms, m. p. 141°; yield, 90% (compare Blom, loc. cit.). 2:4-Dinitro-2':5'-dimethyl-diphenylamine (from p-xylidine and dinitrochlorobenzene), orange-red hair-like needles, m. p. 144°, from EtOH (Found: N, 14·7. Calc.: N, 14·6%). Lesser (Annalen, 1913, 402, 51) gives m. p. 150°.

The following compounds were prepared by refluxing the reactants with EtOH and NaOAc for 1—1½ hrs. 2:4-Dinitro-2'-ethoxydiphenylamine, red silky needles (from Me₂CO), m. p. 172°, readily sol. in C_6H_6 , or AcOH, and moderately easily in EtOH (Found: N, 13·9. Calc.: N, 13·9%). Schöpff (loc. cit.) gives m. p. 164°. 2:4-Dinitro-2'-ethoxy-5-methyldiphenylamine, scarlet needles, m. p. 179·5°; yield, 75% (Found: N, 13·3. $C_{15}H_{15}O_5N_3$ requires N, 13·25%). 2'-Bromo-2:4:6-trinitro-4'-methyldiphenylamine (from picryl chloride and m-bromo-p-toluidine), orange prisms, m. p. 176°; yield, 90%. C_6H_6 or EtOH was suitable as a reaction medium (Found: Br, 20·1. $C_{13}H_9O_6N_4$ Br requires Br, 20·1%). 2:4:6-Trinitrophenylbenzylamine (from picryl chloride and benzylamine; yield, 90%), yellow flat prisms, m. p. 141·5°. James, Jones, and Lewis (loc. cit.) describe chocolate-coloured needles, m. p. 143·3°, and golden-yellow crystals, m. p. 144·8°.

In the three following condensations 2:4:6-trinitrophenylmethylnitroamine was substituted for picryl chloride. 2:4:6-Trinitro-4'-hydroxydiphenylamine, red prisms, m. p. 178°. Turpin (loc. cit., p. 719) and Wedekind (Ber., 1900, 33, 433), who record m. p. 174° and 173° respectively, and Meldola (J., 1917, 111, 550) used picryl chloride in the condensation. 2:4:6-Trinitro-4'-ethoxydiphenylamine (yield, 90%), long thin red prisms, m. p. 138·5°, from EtOH (Found: N, 16·2. C₁₄H₁₂O₇N₄ requires N, 16·1%). 2:4:6-Trinitro-4'-aminodiphenylamine, red prisms, m. p. 194°; yield, 90%. Morgan and Micklethwait (J., 1908, 93, 608) give m. p. 185—187°.

Benzo-2: 4: 6-trinitroanilide.—Picryl chloride and benzamide, heated alone or in EtOH, gave a very small yield of product. Benzamide (1 mol.), picryl chloride (1·2 mols.), and NaOH (1·2 mols.) were refluxed in EtOH for 4 hrs. The solid that separated on cooling crystallised from EtOH in yellow rectangular prisms, m. p. 191°, sol. in Me₂CO, and moderately easily in AcOH (Found: N, 17·1. $C_{13}H_8O_7N_4$ requires N, 16·9%).

University College, Cardiff.

[Received, July 1st, 1932.]